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The Contract between HW and SW

ISA

Transistors
Gates

Assembler

Compilers

Databases

Applications

Software

Hardware
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Memory

• An incredibly important component of a computing system
– We store our programs in it
– We store our data in it
– It is often through memory that we will receive and send out data

• Memory is a recurrent topic in this course
– Memory can be very slow  Caches
– Memory is “finite” (= relatively small)  Virtual Memory
– Memory can make an ISA too complex  Pipelining
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Address and Data

1 bit = 1 DFF
Master-Slave Data Flip-Flop

Random 
Access
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Many Types of Memories

• Different technologies
– SRAM, DRAM, EPROM, Flash, etc.

• Large variations in capabilities
– Capacity, density
– Speed
– Writable, permanent, reprogrammable

• Available as discrete devices (all) and as embedded ASIC 
components (many, increasingly)
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Functional Taxonomy of Memories

Random Access Associative Implicit Addressing

CAM

Serial FIFO LIFOSingle Port Multiport

Special Purpose
RAM ROM

Register File

Content 
Addressable 

Memory
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Taxonomy of Random Access Memories

Volatile
Mask

programmed
(ROM)

One-time
programmable

(OTP ROM
or PROM)

Erasable

Static
(SRAM)

Dynamic

Non-volatile
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(VRAM)

Ferroelectric
(FRAM)

Block
Electrically

Erasable
(Flash)

UV
Erasable
(EPROM)

Electrically
Erasable

(E2PROM)
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Basic Structure

conceptual view of a memory cell 
(in reality much simpler, see later)
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Practical SRAMs

BL /BL

WL

latch

BL

WL

Small, very fast memories
(e.g., maybe Register Files) All practical SRAM use a 6T cell
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DRAM

• Dynamic RAMs are the densest (and thus cheapest) 
form of random-access semiconductor memory

• DRAMs store information as charge in small 
capacitors part of the memory cell

• First patented in 1968 by Robert Dennard, scaled 
amazingly over decades and was somehow an 
important ingredient of the progress of computing 
systems

• Charge leaks off the capacitor due to parasitic 
resistances  every DRAM cell needs a periodic 
refresh (e.g., every ~60 ms) lest it forgets 
information!
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Ideal Random Access Memory Array

Addr
Write
Read

Data

Naddr

Ndata

n-
to

-2
n

de
co

de
r

2Naddr x Ndata
memory
array

word line

bit line

memory cells
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Physical Organisation Can Be Different

Some of the address bits are 
actually used to multiplex BLs

Multiple words on a row (2n)
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More Realistic ROM Array
E.g., 4K x 16 (= 64 Kbit = 2562 bit)

Addr

D0

8

8-
to

-2
56

 d
ec

od
er

256 x 256
memory

array

…
16:1 mux

12

4

D1 D2 D3 D15

OE

pr
ed

ec
od

er

postdecoders

As square as possible 
to minimise

parasitic capacitances 
of BL and WL
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Static RAM Typical Interface

SRAM

Address Data In

Circuit Select
Write Enable

Data Out
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Typical Asynchronous SRAM Read Cycle

• Enable the memory, assert the address, and wait for the data
– Data Out available after a combinational delay Tacc = Access Time

• Maximum frequency limited by minimum Tcyc

A0

D0

Address

Data Out

Circuit Select

Tcyc

Tacc

Ten

ns (min)

ns (max)

ns (max)
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Propagation Delay in the Physical Components
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Typical Synchronous SRAM Read Cycle

• Everything relative to the clock signal
• Latency is the number of cycles between the address asserted and data available

– Often one as in this diagram but in some cases (large memories) more

A1

D1

Address

Data Out

Circuit Select

Tcyc

Tacc

(min)

(max)

Clock

D0

TahTas(min) (min)
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Typical Synchronous SRAM Write Cycle

• Writes on the edge of the clock signal, as a DFF 

A0Address

Write Enable

Tcyc (min)

Clock

TahTas(min) (min)

D0Data In

TdhTds(min) (min)

Circuit Select
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Where is Memory in the Processor?
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How to bring data 
in and out?!

Arithmetic and Logic Instructions

ALURegister
File

A

B

W

AW Wr AA AB

Op

CPU

and  x5, x1, x3

andx5
1

x1
x3

Too few “variables” for 
serious computation
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Load Instructions

Data
Memory

MemDataOut

Address Wr
MemDataIn

MUX

SEL

ALURegister
File

A

B

W

AW Wr AA AB

Op

CPU

lw x5, (123456)

x5 1123456 0 from mem

Not a RISC-V instruction!

Often addresses are 
in parentheses
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Store Instructions

Data
Memory

MemDataOut

Address Wr
MemDataIn

MUX

SEL

ALURegister
File

A

B

W

AW Wr AA AB

Op

CPU

sw x5, (123456)

x50123456 1 out = A

789
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Loads and Store: The RISC-V Way

Data
Memory

MemDataOut

Address Wr
MemDataIn

MUX

SEL

ALURegister
File

A

B

W

AW Wr AA AB

Op

CPU

lw x5, (123456)

x5 1123456 0 from mem

lw x5, (x7)

The address is too big as an immediate value!
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lw x5, (x7)

Loads and Store: The RISC-V Way

Data
Memory

MemDataOut

Address Wr
MemDataIn

MUX

SEL

ALURegister
File

A

B

W

AW Wr AA AB

Op

CPU

x5 1123456 0 from mem

lw x5, (x7+24)lw x5, 24(x7)
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A Load/Store Architecture

• Instructions reading and writing in memory do just that and
nothing else

• It is a typical feature of Reduced Instruction Set Computer 
(RISC) processors, whose advantages will become clear later in 
CS-200
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More Addressing Modes? Not in RISC-V!

• Register
add x0, x1, x2  x0 = x1 + x2;

• Immediate
add x0, x1, 123  x0 = x1 + 123;

• Direct or Absolute
add x0, x1, (1234)  x0 = x1 + mem[1234];

• Register Indirect
add x0, x1, (x2)  x0 = x1 + mem[x2];

• Displacement or Relative
add x0, x1, 123(x2)  x0 = x1 + mem[x2 + 123];

Syntax here looks like RISC-V but most of these instructions do not exist in RISC-V
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More Addressing Modes? Not in RISC-V!

• Base or Indexed
add x0, x1, i5(x2)  x0 = x1 + mem[x2 + i5];

• Auto-increment or -decrement
add x0, x1, (x2+)  x0 = x1 + mem[x2];

• PC-Relative
add x0, x1, 123(pc)  x0 = x1 + mem[pc + 123];

Syntax here looks like RISC-V but most of these instructions do not exist in RISC-V
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An Example from x86/x64

ADD DWORD PTR [EBX + ESI*4 + 16], EAX
This roughly means: read memory at address EBX + ESI*4 + 16, add EAX to it, 

and write the result back into memory (at the same address)

x86/x64 
registers 
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An Example from x86/x64

• Of course, not having the instruction does not mean we cannot do that!
• We need more instructions and some temporary registers for the same:

ADD DWORD PTR [EBX + ESI*4 + 16], EAX

sll t0, a1, 2     # t0 = ESI (in a1) * 4
add t0, a0, t0    # t0 = EBX (in a0) + (ESI * 4)
lw t1, 16(t0)    # t1 = mem[EBX + ESI*4 + 16]
add t1, t1, a2    # t1 = t1 + EAX (in a2)
sw t1, 16(t0)    # mem[EBX + ESI*4 + 16] = t1
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Word Addressed Memory

32-bit
Register

File

A

B

W

AW Wr AA AB

32
32

32

…
3992
3993
3994
3995
3996
3997
3998
3999
4000

4001

…

32-bit

H e l l
o ! …

Yet, bytes (8-bit data) are quite important!
Disks are organized in bytes, 
network packets are bytes…

How do I identify this?!
“The third byte of 3996”?!
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Number bytes and not words!

All 32-bit words are placed at addresses 
that are multiple of four

Byte Addressed Memory

…
3968
3972
3976
3980
3984
3988
3992
3996
4000

4004

…

32-bit

H e l l
o ! …

We will identify these bytes as
3980, 3981, 3982, and 3983 
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Must be zero!

Loading Words (lw) and Instructions

32-bit
Memory

Data Out

Address

3232

bits 31…2

bits 1…0

Aligned memory access

31 2

Address

Reg.
File
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Loading Bytes (lb)

32-bit
Memory

Data Out

Address
8

32 832

bits 31…2

bits 1…0
Inside the processor

Reg.
File
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A Few More Load/Store Instructions

• Access bytes (and half-words) as if memory were made of bytes

When putting something smaller (e.g., a byte) 
into a larger register (32-bit), extension matters:

zero extend unsigned numbers and sign extend signed numbers
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Access Memory as It Is More Suitable!

…
3968
3972
3976
3980
3984
3988
3992
3996
4000

4004

…

32-bit

‘H’ ‘e’ ‘l’ ‘l’
‘o’ ‘!’ zero

…
3979
3980
3981
3982
3983
3984
3985
3986
3987

3988

…

8-bit

‘H’
‘e’
‘l’
‘l’
‘o’
‘!’

zero

lw lb
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‘H’

…
3979
3980
3981
3982
3983
3984
3985
3986
3987

3988

…

8-bit

‘e’
‘l’
‘l’
‘o’
‘!’

zero

Example: Count Characters in a String

strlen() is the standard function to
count the length of an ASCII zero-terminated string
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Example: Count Characters in a String
strlen:

mv t0, a0            # Copy the pointer (a0) into t0 to traverse the string
li t1, 0             # t1 will hold the length (initialized to 0)

loop:
lbu t2, 0(t0)         # Load byte at address t0 into t2
beq t2, zero, end # If t2 is 0 (null byte), we are done
addi t1, t1, 1         # Increment the length counter (t1)
addi t0, t0, 1         # Point to the next character in the string
j loop # Repeat the loop

end:
mv a0, t1            # Move the length (t1) into a0 as the return value
ret # Return to caller

Could this be lb? Which one is correct?
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And Using lw instead of lb?

…
3968
3972
3976
3980
3984
3988
3992
3996
4000

4004

…

32-bit

‘H’ ‘e’ ‘l’ ‘l’
‘o’ ‘!’ zero

…
3979
3980
3981
3982
3983
3984
3985
3986
3987

3988

…

8-bit

‘H’
‘e’
‘l’
‘l’
‘o’
‘!’

zero

lw

lb
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Loading Bytes (lb)

32-bit
Memory

Data Out

Address
8

32 832

bits 31…2

bits 1…0

Reg.
File

How is this 
connected,

exactly?
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Which Byte Where?!

8

32 80
1
2
3

3980 ‘H’ ‘e’ ‘l’ ‘l’

39833980
3981 3982

8

32 83
2
1
0

3980 ‘l’ ‘l’ ‘e’ ‘H’

39803983
3982 3981

It does not matter…
…but we need to decide!

31… …0 31… …0
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Little Endian or Big Endian?

• It only matters if the same data are accessed both as words and bytes or 
if two different systems access the data (e.g., a TCP/IP packet, a WAV file)

3980 0x12345678

0x783980

0x563981

0x343982

0x123983

3980 0x12345678

0x123980

0x343981

0x563982

0x783983

Little-endian,
because we start 

from the “little” end

Big-endian,
because we start 

from the “big” end

RISC-V default
and Intel x86/x64
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And let’s do it for a little-endian processor

‘H’

…
3979
3980
3981
3982
3983
3984
3985
3986
3987

3988

…

8-bit

‘e’
‘l’
‘l’
‘o’
‘!’

zero

Example: strlen() with only lw

Let’s assume that the string is word-aligned; 
that is, the first letter is at an address that is 

a multiple of four 
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Example: strlen() with only lw
strlen:

li t0, 0             # t0 will hold the length (initialized to 0)

next_word:
li t1, 4             # t1 will count the bytes in a loaded word (four)
lw t2, 0(a0)         # Load four bytes at address t0 into t2

next_byte:
andi t3, t2, 0xff      # Move the "little-end" in t3
beq t3, zero, end # If t3 is 0 (null byte), we are done
addi t0, t0, 1         # Increment the length counter (t0)
srli t2, t2, 8         # Prepare the next byte of the word in the "little-end" (t2)
addi t1, t1, -1        # One byte left in the loaded word
bnez t1, next_byte # If more bytes in t2, check the next
addi a0, a0, 4         # Else point to the next word of characters in the string
j next_word # Repeat the loop

end:
mv a0, t0            # Move the length (t0) into a0 as the return value
ret # Return to caller

As an exercise, can 
you write this for a 

big-endian processor?
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