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Memory

* Anincredibly important component of a computing system
— We store our programs in it
— We store our datain it
— It is often through memory that we will receive and send out data

* Memory is a recurrent topic in this course
— Memory can be very slow = Caches
— Memory is “finite” (= relatively small) = Virtual Memory
— Memory can make an ISA too complex = Pipelining




Address and Data
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Many Types of Memories

* Different technologies
— SRAM, DRAM, EPROM, Flash, etc.

* Large variations in capabilities
— Capacity, density
— Speec
— Writable, permanent, reprogrammable

e Available as discrete devices (all) and as embedded ASIC
components (many, increasingly)




Functional Taxonomy of Memories

Random Access Associative Implicit Addressing
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Taxonomy of Random Access Memories

One-time Mask
Volatile Non-volatile Erasable programmab|e programmed
(OTP ROM (ROM)
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Basic Structure

Memory
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Practical SRAMs
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Small, very fast memories
(e.g., maybe Register Files)

WL

BL latch /BL

All practical SRAM use a 6T cell




1T Cell

DRAM " L

Dynamic RAMs are the densest (and thus cheapest)
form of random-access semiconductor memory \ B

DRAMs store information as charge in small
capacitors part of the memory cell

First patented in 1968 by Robert Dennard, scaled
amazingly over decades and was somehow an

ROW ADDR. DEMUX: SELEGT) I

© Wikipedia, Dynamic random-access memory

important ingredient of the progress of computing 1

systems _
Charge leaks off the capacitor due to parasitic ST Hodyr ol olar  oduiliiezy
resistances = every DRAM cell needs a periodic I
refresh (e.g., every ~60 ms) lest it forgets ) _— |
information! B DATASELECTOR U TO TR

D.O. (DATA OUT)
TRI STATE
BUS



Ideal Random Access Memory Array
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Physical Organisation Can Be Different

Multiple words on a row (2")

Some of the address bits are
actually used to multiplex BLs
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More Realistic ROM Array
E.g., 4K x 16 (= 64 Kbit = 2562 bit)

As square as possible

)

g to minimise

§ parasitic capacitances
12 3 a of BL and WL

256 x 256

memory €—__| J
array T

Addr
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postdecoders

OE

Do D1 D, D3 Dis
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Typical Asynchronous SRAM Read Cycle

* Enable the memory, assert the address, and wait for the data

— Data Out available after a combinational delay Tacc = Access Time

 Maximum frequency limited by minimum Tcyc

« Teyc "l ns (min)
Address >< AO ><
Tacc " ns (max)
Circuit Select // \

Ten

ns (max)

Data Out X X DO
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Typical Synchronous SRAM Read Cycle

* Everything relative to the clock signal
* Latency is the number of cycles between the address asserted and data available

— Often one as in this diagram but in some cases (large memories) more

Clock / \
Tcyc E (min)
Address X -Al >< :

(min)

" Tas ¢ Tah | (Mn

Circuit Select / :

o Tacc

|
™ (max)
Data Out DO X >k D1




* Writes on the edge of the clock signal, as a DFF

Typical Synchronous SRAM Write Cycle

Clock / \ //

TCVC > (min)

min) " rgs & Tdh (M

Write Enable / \
Circuit Select J \




Where is Memory in the Processor?
CPU

A

W Reglster
File

MemDataOut

B
Data

Memory AW Wr AA AB

MemDataln
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Address

Control Logic (Read, Decode, Update PC)

MemData
Program dd
= Counter (PC) Q el
Instruction
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Arithmetic and Logic Instructions

/ g A T

Too few “variables” for Register S AL

W
Op
/§

serious computation File

B

AW Wr AA AB

How to bring data soos :
in and out?! X5 x1 and

and x5, x1, x3



Load Instructions

\

A
MemDataOut \—I_W Refillsger > ALU R—
> MUX 5 op
Data /33 /
AL AW Wr AA AB :
MemDataln : I
Address Wr
123456 0 from mem x5 1

Often addresses are

in parentheses
Not a RISC-V instruction! /

> lw x5, (123456)




Store Instructions

A L789 T
~_ Register
MemDataOut I i File > ol
> MUX B Op
Data /33 /
AL AW Wr AA AB :
MemDataln . T S
Add[ess Wr
123456 1 ' @ x5 out = A

sw x5, (123456)



Loads and Store: The RISC-V Way

\

A
MemDataOut \—I_ w Re%” i
> MUX B Op
Data /33 —
Memory AW Wr| AA AB
MemDataln : :
Address Wr .1
123456 0 from mem x5 1™

The address is too big as an immediate value! —

~

lw x5, (x7)




Loads and Store: The RISC-V Way

A
\ Register 1
MemDataOut I i File >l
> MUX
B Op
Data /33 /
AL AW Wr AA AB Y,
MemDataln : T :
Add[ess Wr
125456 0 from mem x5 1

lw x5, 24(x7)



A Load/Store Architecture

* |nstructions reading and writing in memory do just that and
nothing else

* |tis atypical feature of Reduced Instruction Set Computer
(RISC) processors, whose advantages will become clear later in
CS-200

Load
1w rd,imm(rs1) rd + mem|rsi + sext(imm)] | 0x2 0x03

Store
SwW rs2,imm(rsl) mem[rsl + sext(imm)] < rs2 S 0x2 0x23




More Addressing Modes? Not in RISC-V!

Register

add x0, x1, x2 2> X0 = X1 + Xx2;
Immediate

add x0, x1, 123 2> x0 = x1 + 123;
Direct or Absolute

add x0, x1, (1234) 2 X0 = x1 + mem[1234];

Register Indirect
add x0, x1, (x2) -> X0

X1 + mem[x2];

Displacement or Relative
add x0, x1, 123(x2) -> X0

x1 + mem[x2 + 123];

Syntax here looks like RISC-V but most of these instructions do not exist in RISC-V



More Addressing Modes? Not in RISC-V!

e Base or Indexed
add x0, x1, i5(x2) 2> x0 = x1 + mem[x2 + i5];
e Auto-increment or -decrement

add x0, x1, (x2+) > x0 = x1 + mem[x2];
* PC-Relative
add x0, x1, 123(pc) > x0 = x1 + mem[pc + 123];

Syntax here looks like RISC-V but most of these instructions do not exist in RISC-V



An Example from x86/x64

A

Register
File
B

AW Wr AA AB

x86/x64
registers

paly
ADD DWORD PTR [EBX + ESI*4 + 16], EAX

This roughly means: read memory at address EBX + ESI*4 + 16, add EAX to it,
and write the result back into memory (at the same address)




An Example from x86/x64

* Of course, not having the instruction does not mean we cannot do that!
 We need more instructions and some temporary registers for the same:

ADD DWORD PTR [EBX + ESI*4 + 16], EAX

-

ESI (in al) * 4
EBX (in a@) + (ESI * 4)

sll to, al, 2 # to
add t9, a0, to # to
Iw  t1, 16(t0) # t1 = mem[EBX + ESI*4 + 16]
add t1, t1, a2 # tl = t1 + EAX (in a2)

Sw tl, 16(t0) # mem[EBX + ESI*4 + 16] = t1




3992
3993
3994
3995
3996
3997
3998
3999
4000
4001

Word Addressed Memory

Yet, bytes (8-bit

Disks are
/— network

32-bit

data) are quite important!
organized in bytes,
packets are bytes...

32
32 it A7
// W Refiils;cer 32
B —A~

AW V\!r A:A A.B

How do | identify this?!
“The third byte of 3996”7




3968
3972
3976
3980
3984
3988
3992
3996
4000
4004

Byte Addressed Memory

We will identify these bytes as
3980, 3981, 3982, and 3983

-—(D&
S ) SN

(

32-bit

\_

Number bytes and not words!

All 32-bit words are placed at addresses
that are multiple of four

\

J




32

Loading Words (1w) and Instructions

bits 31...2

bits 1...0

31

2

Address

32-bit
Memory

Address

32

Data Out ﬁ Reg.
File

—f— [ Must be zero! ]\

Aligned memory access




32

Loading Bytes (1b)

bits 31...2
Address

32-bit
Memory

Data Out

/ __ Reg.
File

bits 1...0

Inside the processor




A Few More Load/Store Instructions

* Access bytes (and half-words) as if memory were made of bytes

Load

rd,imm(rs1) rd < sext(mem[rsl + sext(imm)|[7 : 0]) | 0x0 0x03
rd,imm(rs1) rd + zext(mem|rs1 4 sext(imm)][7 : 0]) | 0x4 0x03
rd,imm(rs1) rd < sext(mem[rsl + sext(imm)|[15 : 0]) | 0x1 0x03
lhu rd.imm(rs1) rd < zext(memlrs1 + sext(imm)I[15 : OI) [ 0x5 0x03
Store
sb rs2,imm(rs1) mem|rsl + sext(imm)] < rs2[7 : 0] S 0x0 0x23
rs2,imm(rs1) mem|rsl + sext(imm)] < rs2[15 : 0] S 0x1 0x23

When putting something smaller (e.g., a byte)
into a larger register (32-bit), extension matters:
zero extend unsigned numbers and sign extend signed numbers




Access Memory as It Is More Suitable!

1w 1b

3968 3979

3972 3980 | ‘H’
3976 3981 | ‘e
3980 | ‘H | ‘@ ‘I’ ‘v 3982 | I
3984 | ‘@ ‘I | zero 39083 | T
3988 3984 | ‘0
3992 3985 | ‘¥
3996 3986 | zero
4000 3987

4004 3988

<+




Example: Count Characters in a String

3979

3980 | ‘H’ strlen() is the standard function to

3081 | ‘@ count the length of an ASCII zero-terminated string
3982 | T 4_—”””/,/’/

3083 | 1 |&=

3984 | ‘o

3985 | ¥

3986 | zero | €

3987

3988

8-bit







Example: Count Characters in a String

strlen:
mv to, ao # Copy the pointer (a@) into t@ to traverse the string
1li tl, © # t1 will hold the length (initialized to 9)
loop:
t2, 0(to) # Load byte at address tO into t2
t2, zero, end # If t2 is © (null byte), we are done
t1, t1, 1 # Increment the length counter (tl1)
to, to, 1 # Point to the next character in the string
loop # Repeat the loop
a0, ti1 # Move the length (tl) into a@ as the return value

# Return to caller

Could this be 1b? Which one is correct? ]




3968
3972
3976
3980
3984
3988
3992
3996
4000
4004

And Using lw instead of 1b?

(II

III

(i)’
!

Zero

32-bit

3979
3980
3981
3982
3983

3984
3985
3986
3987
3988

IHI

lII

(II

()’
!

Zero

8-bit




32

bits 31...2

Loading Bytes (1b)

Address

32-bit
Memory

Data Out

32

\\oo

bits 1...0

How is this
connected,
exactly?

~ Reg.
" File

\\oo




Which Byte Where?!

8 8
/ /
32 / 8 32 / 8

WIN RO
—

It does not matter...
...but we need to decide!

31.. .0 / \ 31... ...0
3980 ‘H’ ‘l 3980 ‘H’
3980 f \ 3983 3983 f \ 3980

3981 3982 3982 3981




Little Endian or Big Endian?

* |t only matters if the same data are accessed both as words and bytes or
if two different systems access the data (e.g., a TCP/IP packet, a WAV file)

~\
—~ —~
3980 0x12345678 ‘ 3980 0x12345678 ‘

Little-endian,
@ because we start @

from the “little” end

030 | 0x78 |e—— 3980 | Ox12
3981 | Ox56 RISC-V default / 981 | Ox34
and Intel x86/x64

39082 | Ox34 Big-endian, 39082 | Ox56
because we start

3983 | Ox12 from the “big” end 3983 | Ox7/8




Example: strlen() with only 1w

3979
3980
3981
3982
3983
3984
3985
3986
3987
3988

Z€ero

8-bit

N

Let’s assume that the string is word-aligned,;
that is, the first letter is at an address that is
a multiple of four

[ And let’s do it for a little-endian processor ]







Example: strlen() with only 1w

strlen:
1i to, © # t0 will hold the length (initialized to ©)
next_word: (r> . <‘\
1i t1, 4 # t1 will count the bytes in a loaded word (four) As an EXErcCISE, Can
lw  t2, 0(a0) # Load four bytes at address t@ into t2 you write this for a
next_byte: big-endian processor?
andi t3, t2, oxff # Move the "little-end" in t3 \;» <4)
beq t3, zero, end # If t3 is @ (null byte), we are done
addi to, to, 1 # Increment the length counter (t0)
srli t2, t2, 8 # Prepare the next byte of the word in the "little-end" (t2)
addi t1, t1, -1 # One byte left in the loaded word
bnez t1, next_byte # If more bytes in t2, check the next
addi a0, a0, 4 # Else point to the next word of characters in the string
J next_word # Repeat the loop
end:
mv a0, to # Move the length (t@) into a® as the return value

ret # Return to caller
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