
1

CS-200
Computer Architecture

—
Part 1c. Instruction Set Architecture

Memory and Addressing Modes

Paolo Ienne
<paolo.ienne@epfl.ch>

2

The Contract between HW and SW

ISA

Transistors
Gates

Assembler

Compilers

Databases

Applications

Software

Hardware

3

Memory

• An incredibly important component of a computing system
– We store our programs in it
– We store our data in it
– It is often through memory that we will receive and send out data

• Memory is a recurrent topic in this course
– Memory can be very slow  Caches
– Memory is “finite” (= relatively small)  Virtual Memory
– Memory can make an ISA too complex  Pipelining

4

Address and Data

1 bit = 1 DFF
Master-Slave Data Flip-Flop

Random
Access

5

Many Types of Memories

• Different technologies
– SRAM, DRAM, EPROM, Flash, etc.

• Large variations in capabilities
– Capacity, density
– Speed
– Writable, permanent, reprogrammable

• Available as discrete devices (all) and as embedded ASIC
components (many, increasingly)

6

Functional Taxonomy of Memories

Random Access Associative Implicit Addressing

CAM

Serial FIFO LIFOSingle Port Multiport

Special Purpose
RAM ROM

Register File

Content
Addressable

Memory

7

Taxonomy of Random Access Memories

Volatile
Mask

programmed
(ROM)

One-time
programmable

(OTP ROM
or PROM)

Erasable

Static
(SRAM)

Dynamic

Non-volatile

DRAM Video
(VRAM)

Ferroelectric
(FRAM)

Block
Electrically

Erasable
(Flash)

UV
Erasable
(EPROM)

Electrically
Erasable

(E2PROM)

8

Basic Structure

conceptual view of a memory cell
(in reality much simpler, see later)

9

Write

D

1

1

1
0

Read

D

1

1
1

Practical SRAMs

BL /BL

WL

latch

BL

WL

Small, very fast memories
(e.g., maybe Register Files) All practical SRAM use a 6T cell

1
2

DRAM

• Dynamic RAMs are the densest (and thus cheapest)
form of random-access semiconductor memory

• DRAMs store information as charge in small
capacitors part of the memory cell

• First patented in 1968 by Robert Dennard, scaled
amazingly over decades and was somehow an
important ingredient of the progress of computing
systems

• Charge leaks off the capacitor due to parasitic
resistances  every DRAM cell needs a periodic
refresh (e.g., every ~60 ms) lest it forgets
information!

©
 W

ik
ip

ed
ia

, D
yn

am
ic

 ra
nd

om
-a

cc
es

s m
em

or
yBL

WL

C

1T Cell

1
3

Ideal Random Access Memory Array

Addr
Write
Read

Data

Naddr

Ndata

n-
to

-2
n

de
co

de
r

2Naddr x Ndata
memory
array

word line

bit line

memory cells

1
4

Physical Organisation Can Be Different

Some of the address bits are
actually used to multiplex BLs

Multiple words on a row (2n)

1
5

More Realistic ROM Array
E.g., 4K x 16 (= 64 Kbit = 2562 bit)

Addr

D0

8

8-
to

-2
56

 d
ec

od
er

256 x 256
memory

array

…
16:1 mux

12

4

D1 D2 D3 D15

OE

pr
ed

ec
od

er

postdecoders

As square as possible
to minimise

parasitic capacitances
of BL and WL

1
6

Static RAM Typical Interface

SRAM

Address Data In

Circuit Select
Write Enable

Data Out

1
7

Typical Asynchronous SRAM Read Cycle

• Enable the memory, assert the address, and wait for the data
– Data Out available after a combinational delay Tacc = Access Time

• Maximum frequency limited by minimum Tcyc

A0

D0

Address

Data Out

Circuit Select

Tcyc

Tacc

Ten

ns (min)

ns (max)

ns (max)

1
8

Propagation Delay in the Physical Components

1
9

Typical Synchronous SRAM Read Cycle

• Everything relative to the clock signal
• Latency is the number of cycles between the address asserted and data available

– Often one as in this diagram but in some cases (large memories) more

A1

D1

Address

Data Out

Circuit Select

Tcyc

Tacc

(min)

(max)

Clock

D0

TahTas(min) (min)

2
0

Typical Synchronous SRAM Write Cycle

• Writes on the edge of the clock signal, as a DFF

A0Address

Write Enable

Tcyc (min)

Clock

TahTas(min) (min)

D0Data In

TdhTds(min) (min)

Circuit Select

2
1

Where is Memory in the Processor?

2
2

How to bring data
in and out?!

Arithmetic and Logic Instructions

ALURegister
File

A

B

W

AW Wr AA AB

Op

CPU

and x5, x1, x3

andx5
1

x1
x3

Too few “variables” for
serious computation

2
3

Load Instructions

Data
Memory

MemDataOut

Address Wr
MemDataIn

MUX

SEL

ALURegister
File

A

B

W

AW Wr AA AB

Op

CPU

lw x5, (123456)

x5 1123456 0 from mem

Not a RISC-V instruction!

Often addresses are
in parentheses

2
4

Store Instructions

Data
Memory

MemDataOut

Address Wr
MemDataIn

MUX

SEL

ALURegister
File

A

B

W

AW Wr AA AB

Op

CPU

sw x5, (123456)

x50123456 1 out = A

789

2
5

Loads and Store: The RISC-V Way

Data
Memory

MemDataOut

Address Wr
MemDataIn

MUX

SEL

ALURegister
File

A

B

W

AW Wr AA AB

Op

CPU

lw x5, (123456)

x5 1123456 0 from mem

lw x5, (x7)

The address is too big as an immediate value!

2
6

lw x5, (x7)

Loads and Store: The RISC-V Way

Data
Memory

MemDataOut

Address Wr
MemDataIn

MUX

SEL

ALURegister
File

A

B

W

AW Wr AA AB

Op

CPU

x5 1123456 0 from mem

lw x5, (x7+24)lw x5, 24(x7)

2
7

A Load/Store Architecture

• Instructions reading and writing in memory do just that and
nothing else

• It is a typical feature of Reduced Instruction Set Computer
(RISC) processors, whose advantages will become clear later in
CS-200

2
8

More Addressing Modes? Not in RISC-V!

• Register
add x0, x1, x2  x0 = x1 + x2;

• Immediate
add x0, x1, 123  x0 = x1 + 123;

• Direct or Absolute
add x0, x1, (1234)  x0 = x1 + mem[1234];

• Register Indirect
add x0, x1, (x2)  x0 = x1 + mem[x2];

• Displacement or Relative
add x0, x1, 123(x2)  x0 = x1 + mem[x2 + 123];

Syntax here looks like RISC-V but most of these instructions do not exist in RISC-V

2
9

More Addressing Modes? Not in RISC-V!

• Base or Indexed
add x0, x1, i5(x2)  x0 = x1 + mem[x2 + i5];

• Auto-increment or -decrement
add x0, x1, (x2+)  x0 = x1 + mem[x2];

• PC-Relative
add x0, x1, 123(pc)  x0 = x1 + mem[pc + 123];

Syntax here looks like RISC-V but most of these instructions do not exist in RISC-V

3
0

An Example from x86/x64

ADD DWORD PTR [EBX + ESI*4 + 16], EAX
This roughly means: read memory at address EBX + ESI*4 + 16, add EAX to it,

and write the result back into memory (at the same address)

x86/x64
registers

3
1

An Example from x86/x64

• Of course, not having the instruction does not mean we cannot do that!
• We need more instructions and some temporary registers for the same:

ADD DWORD PTR [EBX + ESI*4 + 16], EAX

sll t0, a1, 2 # t0 = ESI (in a1) * 4
add t0, a0, t0 # t0 = EBX (in a0) + (ESI * 4)
lw t1, 16(t0) # t1 = mem[EBX + ESI*4 + 16]
add t1, t1, a2 # t1 = t1 + EAX (in a2)
sw t1, 16(t0) # mem[EBX + ESI*4 + 16] = t1

3
2

Word Addressed Memory

32-bit
Register

File

A

B

W

AW Wr AA AB

32
32

32

…
3992
3993
3994
3995
3996
3997
3998
3999
4000

4001

…

32-bit

H e l l
o ! …

Yet, bytes (8-bit data) are quite important!
Disks are organized in bytes,
network packets are bytes…

How do I identify this?!
“The third byte of 3996”?!

3
3

Number bytes and not words!

All 32-bit words are placed at addresses
that are multiple of four

Byte Addressed Memory

…
3968
3972
3976
3980
3984
3988
3992
3996
4000

4004

…

32-bit

H e l l
o ! …

We will identify these bytes as
3980, 3981, 3982, and 3983

3
4

Must be zero!

Loading Words (lw) and Instructions

32-bit
Memory

Data Out

Address

3232

bits 31…2

bits 1…0

Aligned memory access

31 2

Address

Reg.
File

3
5

Loading Bytes (lb)

32-bit
Memory

Data Out

Address
8

32 832

bits 31…2

bits 1…0
Inside the processor

Reg.
File

3
6

A Few More Load/Store Instructions

• Access bytes (and half-words) as if memory were made of bytes

When putting something smaller (e.g., a byte)
into a larger register (32-bit), extension matters:

zero extend unsigned numbers and sign extend signed numbers

3
7

Access Memory as It Is More Suitable!

…
3968
3972
3976
3980
3984
3988
3992
3996
4000

4004

…

32-bit

‘H’ ‘e’ ‘l’ ‘l’
‘o’ ‘!’ zero

…
3979
3980
3981
3982
3983
3984
3985
3986
3987

3988

…

8-bit

‘H’
‘e’
‘l’
‘l’
‘o’
‘!’

zero

lw lb

3
8

‘H’

…
3979
3980
3981
3982
3983
3984
3985
3986
3987

3988

…

8-bit

‘e’
‘l’
‘l’
‘o’
‘!’

zero

Example: Count Characters in a String

strlen() is the standard function to
count the length of an ASCII zero-terminated string

3
9

4
0

Example: Count Characters in a String
strlen:

mv t0, a0 # Copy the pointer (a0) into t0 to traverse the string
li t1, 0 # t1 will hold the length (initialized to 0)

loop:
lbu t2, 0(t0) # Load byte at address t0 into t2
beq t2, zero, end # If t2 is 0 (null byte), we are done
addi t1, t1, 1 # Increment the length counter (t1)
addi t0, t0, 1 # Point to the next character in the string
j loop # Repeat the loop

end:
mv a0, t1 # Move the length (t1) into a0 as the return value
ret # Return to caller

Could this be lb? Which one is correct?

4
1

And Using lw instead of lb?

…
3968
3972
3976
3980
3984
3988
3992
3996
4000

4004

…

32-bit

‘H’ ‘e’ ‘l’ ‘l’
‘o’ ‘!’ zero

…
3979
3980
3981
3982
3983
3984
3985
3986
3987

3988

…

8-bit

‘H’
‘e’
‘l’
‘l’
‘o’
‘!’

zero

lw

lb

4
2

Loading Bytes (lb)

32-bit
Memory

Data Out

Address
8

32 832

bits 31…2

bits 1…0

Reg.
File

How is this
connected,

exactly?

4
3

Which Byte Where?!

8

32 80
1
2
3

3980 ‘H’ ‘e’ ‘l’ ‘l’

39833980
3981 3982

8

32 83
2
1
0

3980 ‘l’ ‘l’ ‘e’ ‘H’

39803983
3982 3981

It does not matter…
…but we need to decide!

31… …0 31… …0

4
4

Little Endian or Big Endian?

• It only matters if the same data are accessed both as words and bytes or
if two different systems access the data (e.g., a TCP/IP packet, a WAV file)

3980 0x12345678

0x783980

0x563981

0x343982

0x123983

3980 0x12345678

0x123980

0x343981

0x563982

0x783983

Little-endian,
because we start

from the “little” end

Big-endian,
because we start

from the “big” end

RISC-V default
and Intel x86/x64

4
5

And let’s do it for a little-endian processor

‘H’

…
3979
3980
3981
3982
3983
3984
3985
3986
3987

3988

…

8-bit

‘e’
‘l’
‘l’
‘o’
‘!’

zero

Example: strlen() with only lw

Let’s assume that the string is word-aligned;
that is, the first letter is at an address that is

a multiple of four

4
6

4
7

Example: strlen() with only lw
strlen:

li t0, 0 # t0 will hold the length (initialized to 0)

next_word:
li t1, 4 # t1 will count the bytes in a loaded word (four)
lw t2, 0(a0) # Load four bytes at address t0 into t2

next_byte:
andi t3, t2, 0xff # Move the "little-end" in t3
beq t3, zero, end # If t3 is 0 (null byte), we are done
addi t0, t0, 1 # Increment the length counter (t0)
srli t2, t2, 8 # Prepare the next byte of the word in the "little-end" (t2)
addi t1, t1, -1 # One byte left in the loaded word
bnez t1, next_byte # If more bytes in t2, check the next
addi a0, a0, 4 # Else point to the next word of characters in the string
j next_word # Repeat the loop

end:
mv a0, t0 # Move the length (t0) into a0 as the return value
ret # Return to caller

As an exercise, can
you write this for a

big-endian processor?

4
8

References

• Patterson & Hennessy, COD – RISC-V Edition
– Chapter 2 and, in particular, Sections 2.3 and 2.9
– Sections 5.1 and 5.2

	CS-200�Computer Architecture�—�Part 1c. Instruction Set Architecture�Memory and Addressing Modes
	The Contract between HW and SW
	Memory
	Address and Data
	Many Types of Memories
	Functional Taxonomy of Memories
	Taxonomy of Random Access Memories
	Basic Structure
	Write
	Read
	Practical SRAMs
	DRAM
	Ideal Random Access Memory Array
	Physical Organisation Can Be Different
	More Realistic ROM Array�E.g., 4K x 16 (= 64 Kbit = 2562 bit)
	Static RAM Typical Interface
	Typical Asynchronous SRAM Read Cycle
	Propagation Delay in the Physical Components
	Typical Synchronous SRAM Read Cycle
	Typical Synchronous SRAM Write Cycle
	Where is Memory in the Processor?
	Arithmetic and Logic Instructions
	Load Instructions
	Store Instructions
	Loads and Store: The RISC-V Way
	Loads and Store: The RISC-V Way
	A Load/Store Architecture
	More Addressing Modes? Not in RISC-V!
	More Addressing Modes? Not in RISC-V!
	An Example from x86/x64
	An Example from x86/x64
	Word Addressed Memory
	Byte Addressed Memory
	Loading Words (lw) and Instructions
	Loading Bytes (lb)
	A Few More Load/Store Instructions
	Access Memory as It Is More Suitable!
	Example: Count Characters in a String
	Slide Number 39
	Example: Count Characters in a String
	And Using lw instead of lb?
	Loading Bytes (lb)
	Which Byte Where?!
	Little Endian or Big Endian?
	Example: strlen() with only lw
	Slide Number 46
	Example: strlen() with only lw
	References

